In situ investigation of an organic micro-globule and its mineralogical context within a Ryugu “sand” grain

Van T.H. Phan, Pierre Beck, Rolando Rebois, Eric Quirico, Takaaki Noguchi, Toru Matsumoto, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Hikaru Saito, Satoshi Hata, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hope A. Ishii, John P. Bradley, Kenta K. Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le GuillouDamien Jacob, Francisco de la Peña, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Dennis Harries, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Jérémie Mathurin, Alexandre Dazzi, Emmanuel Dartois, Cécile Engrand, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Aki Takigawa, Tatsuhiro Michikami, Tomoki Nakamura, Megumi Matsumoto, Yusuke Nakauchi, Masanao Abe, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tomohiro Usui, Toru Yada, Hisayoshi Yurimoto, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamotoa, Peter Hoppe, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei ichiro Watanabe, Yuichi Tsuda

Research output: Contribution to journalArticlepeer-review

Abstract

The Hayabusa2 mission from the Japan Aerospace Exploration Agency (JAXA) returned to the Earth samples of carbonaceous asteroid (162173) Ryugu. This mission offers a unique opportunity to investigate in the laboratory samples from a C-type asteroid, without physical or chemical alteration by the terrestrial atmosphere. Here, we report on an investigation of the mineralogy and the organo-chemistry of Hayabusa2 samples using a combination of micro- and nano-infrared spectroscopy. Particles investigated with conventional FTIR spectroscopy have spectra dominated by phyllosilicate-related absorption, as observed for samples of CI-chondrites, selected ungrouped carbonaceous chondrites, and selected hydrated micrometeorites. Ryugu samples show smaller sulfate-related absorption than CI-chondrites. Our samples that were only briefly exposed to the Earth atmosphere show absorptions related to molecular water, revealing fast terrestrial contamination of the spectral signature at 3 μm. Overall, our FTIR data are in agreement with other work done on Ryugu samples, revealing a low degree of mineralogical variability across Ryugu samples. AFM-IR mapping of the grains shows the presence of a micrometer-sized organic globule in one of our analyzed grains. The AFM-IR spectra obtained on this globule are similar to IR spectra obtained on IOM suggesting that it is constituted of refractory organic matter. This globule may host silicate in its interior, with a different mineralogy than bulk Ryugu phyllosilicate. The shape, presence of peculiar silicate, and the nature of organic constituting the globule point toward a pre-accretionary origin of this globule and that at least part of Ryugu organics were inherited from the protosolar nebulae or the interstellar media. Altogether, our results show the similarities between Ryugu samples and CI chondrites.

Original languageEnglish (US)
Pages (from-to)1983-2001
Number of pages19
JournalMeteoritics and Planetary Science
Volume59
Issue number8
DOIs
StatePublished - Aug 2024

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Space and Planetary Science

Cite this