Abstract
We present the uniaxial stress-strain response of a freestanding 100 nanometer thick 99.99% pure sputtered Aluminum film with grain size about 60 nanometers, tested in-situ inside a SEM chamber. The specimen is cofabricated with MEMS force and displacement sensors to minimize the experimental setup size, allowing both quantitative and in-situ tests to be performed in SEM and TEM chambers. The experimental results strongly suggest that at this size scale, a) Elastic modulus remains same as the bulk Aluminum, b) Yielding starts at about 625 MPa, and c) Strain hardening effect is absent, which indirectly suggests the deformation at this size scale is not dislocation mechanism based.
Original language | English (US) |
---|---|
Pages (from-to) | 361-364 |
Number of pages | 4 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 695 |
State | Published - 2002 |
Event | Thin Films: Stresses and Mechanical Properties IX - Boston, MA, United States Duration: Nov 26 2001 → Nov 30 2001 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering