In Situ Observation of β-Ga 2 O 3 Schottky Diode Failure under Forward Biasing Condition

Zahabul Islam, Minghan Xian, Aman Haque, Fan Ren, Marko Tadjer, Nicholas Glavin, Stephen Pearton

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

In this article, we investigate defect nucleation leading to device degradation in \beta -Ga2O3 Schottky barrier diodes by operating them inside a transmission electron microscope. Such in situ approach allows simultaneous visualization and quantitative device characterization, not possible with the current art of postmortem microscopy. High current density and associated mechanical and thermal fields are shown to induce different types of crystal defects, from vacancy cluster and stacking fault to microcrack generation prior to failure. These structural defects can act as traps for carrier and cause device failure at high biasing voltage. Fundamental insights on nucleation of these defects and their evolution are important from materials reliability and device design perspectives.

Original languageEnglish (US)
Article number9121688
Pages (from-to)3056-3061
Number of pages6
JournalIEEE Transactions on Electron Devices
Volume67
Issue number8
DOIs
StatePublished - Aug 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'In Situ Observation of β-Ga 2 O 3 Schottky Diode Failure under Forward Biasing Condition'. Together they form a unique fingerprint.

Cite this