TY - GEN
T1 - In situ polymerization of PEGDA foam for bone defects
AU - Forghani, A.
AU - Garber, L.
AU - Chen, C.
AU - Devireddy, R.
AU - Pojman, J.
AU - Hayes, D.
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The purpose of this study is to develop a novel bone replacement using in situ polymerization of thiol-acrylate with adipose tissue derived adult stem cells (ASCs). Specifically, Poly(ethylene glycol) diacrylate-co-trimethylolpropane tris (3-mercaptopropionate) (PEGDA-co-TMPTMP) was synthesized with 10%Hydroxyapatite (HA) foam by an amine-catalyzed Michael addition reaction. Initial characterization studies were performed to determine the temperature profile during the exothermic reaction showing a peak temperature of 50°C. To prevent hyperthermic cell damage and death during the exothermic polymerization procedure, the hASCs were encapsulated in alginate. Characterization of the 3-D structure and interconnectivity of pores in the polymeric foam scaffolds were performed using FIB-SEM and Micro-CT showing uniform distribution of HA. Cell viability experiments within the polymeric scaffold were performed using Vybrant® MTT cell profileration method, as well as fluorescent dyes: Calcein-AM (live) and Ethidium homodimer-1 (dead) showing viability of cells inside the samples.
AB - The purpose of this study is to develop a novel bone replacement using in situ polymerization of thiol-acrylate with adipose tissue derived adult stem cells (ASCs). Specifically, Poly(ethylene glycol) diacrylate-co-trimethylolpropane tris (3-mercaptopropionate) (PEGDA-co-TMPTMP) was synthesized with 10%Hydroxyapatite (HA) foam by an amine-catalyzed Michael addition reaction. Initial characterization studies were performed to determine the temperature profile during the exothermic reaction showing a peak temperature of 50°C. To prevent hyperthermic cell damage and death during the exothermic polymerization procedure, the hASCs were encapsulated in alginate. Characterization of the 3-D structure and interconnectivity of pores in the polymeric foam scaffolds were performed using FIB-SEM and Micro-CT showing uniform distribution of HA. Cell viability experiments within the polymeric scaffold were performed using Vybrant® MTT cell profileration method, as well as fluorescent dyes: Calcein-AM (live) and Ethidium homodimer-1 (dead) showing viability of cells inside the samples.
UR - http://www.scopus.com/inward/record.url?scp=84982920970&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982920970&partnerID=8YFLogxK
U2 - 10.1115/IMECE2015-51235
DO - 10.1115/IMECE2015-51235
M3 - Conference contribution
AN - SCOPUS:84982920970
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Biomedical and Biotechnology Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Y2 - 13 November 2015 through 19 November 2015
ER -