TY - JOUR
T1 - In vitro real-time magnetic resonance imaging for quantification of thrombosis
AU - Yang, Ling
AU - Neuberger, Thomas
AU - Manning, Keefe B.
N1 - Publisher Copyright:
© 2020, European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
PY - 2021/4
Y1 - 2021/4
N2 - Objectives: Thrombosis is a leading cause of failure for cardiovascular devices. While computational simulations are a powerful tool to predict thrombosis and evaluate the risk for medical devices, limited experimental data are available to validate the simulations. The aim of the current study is to provide experimental data of a growing thrombus for device-induced thrombosis. Materials and methods: Thrombosis within a backward-facing step (BFS), or sudden expansion was investigated, using bovine and human blood circulated through the BFS model for 30 min, with a constant inflow rate of 0.76 L/min. Real-time three-dimensional flow-compensated magnetic resonance imaging (MRI), supported with Magnevist, a contrast agent improving thrombus delineation, was applied to quantify thrombus deposition and growth within the model. Results: The study showed that the BFS model induced a flow recirculation region, which facilitated thrombosis. By 30 min, in comparison to bovine blood, human blood resulted in smaller thrombus formation, in terms of the length (13.3 ± 0.6 vs. 18.1 ± 1.3 mm), height (2.3 ± 0.1 vs. 2.6 ± 0.04 mm), surface area exposed to blood (0.67 ± 0.03 vs 1.05 ± 0.08 cm2), and volume (0.069 ± 0.004 vs. 0.093 ± 0.007 cm3), with p < 0.01. Normalization of the thrombus measurements, which excluded the flow recirculation effects, suggested that the thrombus sizes increased during the first 15 min and stabilized after 20 min. Blood properties, including viscosity, hematocrit, and platelet count affected thrombosis. Conclusion: For the first time, contrast agent-supported real-time MRI was performed to investigate thrombus deposition and growth within a sudden expansion. This study provides experimental data for device-induced thrombosis, which is valuable for validation of computational thrombosis simulations.
AB - Objectives: Thrombosis is a leading cause of failure for cardiovascular devices. While computational simulations are a powerful tool to predict thrombosis and evaluate the risk for medical devices, limited experimental data are available to validate the simulations. The aim of the current study is to provide experimental data of a growing thrombus for device-induced thrombosis. Materials and methods: Thrombosis within a backward-facing step (BFS), or sudden expansion was investigated, using bovine and human blood circulated through the BFS model for 30 min, with a constant inflow rate of 0.76 L/min. Real-time three-dimensional flow-compensated magnetic resonance imaging (MRI), supported with Magnevist, a contrast agent improving thrombus delineation, was applied to quantify thrombus deposition and growth within the model. Results: The study showed that the BFS model induced a flow recirculation region, which facilitated thrombosis. By 30 min, in comparison to bovine blood, human blood resulted in smaller thrombus formation, in terms of the length (13.3 ± 0.6 vs. 18.1 ± 1.3 mm), height (2.3 ± 0.1 vs. 2.6 ± 0.04 mm), surface area exposed to blood (0.67 ± 0.03 vs 1.05 ± 0.08 cm2), and volume (0.069 ± 0.004 vs. 0.093 ± 0.007 cm3), with p < 0.01. Normalization of the thrombus measurements, which excluded the flow recirculation effects, suggested that the thrombus sizes increased during the first 15 min and stabilized after 20 min. Blood properties, including viscosity, hematocrit, and platelet count affected thrombosis. Conclusion: For the first time, contrast agent-supported real-time MRI was performed to investigate thrombus deposition and growth within a sudden expansion. This study provides experimental data for device-induced thrombosis, which is valuable for validation of computational thrombosis simulations.
UR - http://www.scopus.com/inward/record.url?scp=85088794724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088794724&partnerID=8YFLogxK
U2 - 10.1007/s10334-020-00872-2
DO - 10.1007/s10334-020-00872-2
M3 - Article
C2 - 32729094
AN - SCOPUS:85088794724
SN - 0968-5243
VL - 34
SP - 285
EP - 295
JO - Magnetic Resonance Materials in Physics, Biology and Medicine
JF - Magnetic Resonance Materials in Physics, Biology and Medicine
IS - 2
ER -