TY - JOUR
T1 - In vivo DNA-binding properties of a yeast transcription activator protein.
AU - Selleck, S. B.
AU - Majors, J. E.
PY - 1987
Y1 - 1987
N2 - UV light can serve as a molecular probe to identify DNA-protein interactions at nucleotide level resolution from intact yeast cells. We have used the photofootprinting technique to determine during which of three regulated states (uninduced, induced, and catabolite repressed) the transcriptional activator protein encoded by GAL4 binds to its recognition sites within the GAL1-GAL10 upstream activating sequence (UASG). GAL4 protein is bound to at least four, and probably five, related sequence blocks within UASG under both induced and uninduced states. GAL4-dependent photofootprints are lost under conditions of catabolite repression. We observed no footprint patterns unique to catabolite-repressed cells, which suggests that binding of a repressor to the UASG is not involved in this process. Photofootprints of the GAL10 TATA element are strictly correlated with transcription: uninduced, catabolite-repressed, and delta gal4 cells exhibit footprints characteristic of the inactive promoter; induced and delta gal80 cells, which express GAL10 constitutively, display footprints unique to the actively transcribed gene.
AB - UV light can serve as a molecular probe to identify DNA-protein interactions at nucleotide level resolution from intact yeast cells. We have used the photofootprinting technique to determine during which of three regulated states (uninduced, induced, and catabolite repressed) the transcriptional activator protein encoded by GAL4 binds to its recognition sites within the GAL1-GAL10 upstream activating sequence (UASG). GAL4 protein is bound to at least four, and probably five, related sequence blocks within UASG under both induced and uninduced states. GAL4-dependent photofootprints are lost under conditions of catabolite repression. We observed no footprint patterns unique to catabolite-repressed cells, which suggests that binding of a repressor to the UASG is not involved in this process. Photofootprints of the GAL10 TATA element are strictly correlated with transcription: uninduced, catabolite-repressed, and delta gal4 cells exhibit footprints characteristic of the inactive promoter; induced and delta gal80 cells, which express GAL10 constitutively, display footprints unique to the actively transcribed gene.
UR - http://www.scopus.com/inward/record.url?scp=0023408657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023408657&partnerID=8YFLogxK
U2 - 10.1128/MCB.7.9.3260
DO - 10.1128/MCB.7.9.3260
M3 - Article
C2 - 3313011
AN - SCOPUS:0023408657
SN - 0270-7306
VL - 7
SP - 3260
EP - 3267
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 9
ER -