Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C

Lily X. Li, Ruth H. Nissly, Anand Swaminathan, Ian M. Bird, Nina R. Boyle, Meera Surendran Nair, Denver I. Greenawalt, Abhinay Gontu, Victoria S. Cavener, Ty Sornberger, James D. Freihaut, Suresh V. Kuchipudi, William P. Bahnfleth

Research output: Contribution to journalArticlepeer-review

Abstract

Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.

Original languageEnglish (US)
Article number112755
JournalJournal of Photochemistry and Photobiology B: Biology
Volume245
DOIs
StatePublished - Aug 2023

All Science Journal Classification (ASJC) codes

  • Radiation
  • Radiological and Ultrasound Technology
  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this