TY - GEN
T1 - Including preference in anthropometry-driven models for design
AU - Garneau, Christopher J.
AU - Parkinson, Matthew B.
PY - 2008
Y1 - 2008
N2 - In the design of artifacts that interact with people, the spatial dimensions of the user population are often used to size and engineer the artifact. The variability in body dimensions (called "anthropometry") is used to indicate how much adjustability or how many sizes are required to accommodate the intended user population. However, anthropometry is not the only predictor of these kinds of interactions. For example, two vehicle drivers with similar body dimensions might have very different preferred locations for the seat. The variability not predicted by body dimensions can be considered "preference". Well-conceived models considering all sources of variability can can facilitate the application of design automation tools such as optimization and robust design methodologies, resulting in products that are safer, cost effective, and more accessible to broader populations (including people with disabilities). In contrast, poor models and those that fail to include a preference component can produce misleading results that under- or over-approximate accommodation and prescribe inappropriate amounts of adjustability. This paper reviews common methods of designing for human variability, demonstrating the use and strengths and weaknesses of each. This is done in the context of a simple, univariate case study to determine the appropriate allocation of adjustability to achieve a desired accommodation level.
AB - In the design of artifacts that interact with people, the spatial dimensions of the user population are often used to size and engineer the artifact. The variability in body dimensions (called "anthropometry") is used to indicate how much adjustability or how many sizes are required to accommodate the intended user population. However, anthropometry is not the only predictor of these kinds of interactions. For example, two vehicle drivers with similar body dimensions might have very different preferred locations for the seat. The variability not predicted by body dimensions can be considered "preference". Well-conceived models considering all sources of variability can can facilitate the application of design automation tools such as optimization and robust design methodologies, resulting in products that are safer, cost effective, and more accessible to broader populations (including people with disabilities). In contrast, poor models and those that fail to include a preference component can produce misleading results that under- or over-approximate accommodation and prescribe inappropriate amounts of adjustability. This paper reviews common methods of designing for human variability, demonstrating the use and strengths and weaknesses of each. This is done in the context of a simple, univariate case study to determine the appropriate allocation of adjustability to achieve a desired accommodation level.
UR - http://www.scopus.com/inward/record.url?scp=44849109631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44849109631&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-35479
DO - 10.1115/DETC2007-35479
M3 - Conference contribution
AN - SCOPUS:44849109631
SN - 0791848027
SN - 9780791848029
SN - 0791848078
SN - 9780791848074
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 397
EP - 404
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 33rd Design Automation Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -