Incorporating basic RANS calibrations in existing machine-learned turbulence modelling

Jiaqi J.L. Li, Yuanwei Bin, George P. Huang, Xiang I.A. Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work aims to incorporate basic calibrations of Reynolds-averaged Navier-Stokes (RANS) models as part of machine learning (ML) frameworks. The ML frameworks considered are tensor-basis neural network (TBNN), physics-informed machine learning (PIML), and field inversion & machine learning (FIML) in J. Fluid Mech., 2016, 807, 155-166, Phys. Rev. Fluids, 2017, 2(3), 034603 and J. Comp. Phys., 2016, 305, 758-774, and the baseline RANS models are the one-equation Spalart-Allmaras model, the two-equation k-ω model, and the seven-equation Reynolds stress transport models. ML frameworks are trained against plane channel flow and shear-layer flow data. We compare the ML frameworks and study whether the machine-learned augmentations are detrimental outside the training set. The findings are summarized as follows. The augmentations due to TBNN are detrimental. PIML leads to augmentations that are beneficial inside the training dataset but detrimental outside it. These results are not affected by the baseline RANS model. FIML’s augmentations to the two eddy viscosity models, where an inner-layer treatment already exists, are largely neutral. Its augmentation to the seven-equation model, where an inner-layer treatment does not exist, improves the mean flow prediction in a channel. Furthermore, these FIML augmentations are mostly non-detrimental outside the training dataset. In addition to reporting these results, the paper offers physical explanations of the results. Last, we note that the conclusions drawn here are confined to the ML frameworks and the flows considered in this study. More detailed comparative studies and validation & verification studies are needed to account for developments in recent years.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624107115
DOIs
StatePublished - 2024
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: Jan 8 2024Jan 12 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period1/8/241/12/24

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Incorporating basic RANS calibrations in existing machine-learned turbulence modelling'. Together they form a unique fingerprint.

Cite this