TY - GEN
T1 - Incorporating basic RANS calibrations in existing machine-learned turbulence modelling
AU - Li, Jiaqi J.L.
AU - Bin, Yuanwei
AU - Huang, George P.
AU - Yang, Xiang I.A.
N1 - Publisher Copyright:
© 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2024
Y1 - 2024
N2 - This work aims to incorporate basic calibrations of Reynolds-averaged Navier-Stokes (RANS) models as part of machine learning (ML) frameworks. The ML frameworks considered are tensor-basis neural network (TBNN), physics-informed machine learning (PIML), and field inversion & machine learning (FIML) in J. Fluid Mech., 2016, 807, 155-166, Phys. Rev. Fluids, 2017, 2(3), 034603 and J. Comp. Phys., 2016, 305, 758-774, and the baseline RANS models are the one-equation Spalart-Allmaras model, the two-equation k-ω model, and the seven-equation Reynolds stress transport models. ML frameworks are trained against plane channel flow and shear-layer flow data. We compare the ML frameworks and study whether the machine-learned augmentations are detrimental outside the training set. The findings are summarized as follows. The augmentations due to TBNN are detrimental. PIML leads to augmentations that are beneficial inside the training dataset but detrimental outside it. These results are not affected by the baseline RANS model. FIML’s augmentations to the two eddy viscosity models, where an inner-layer treatment already exists, are largely neutral. Its augmentation to the seven-equation model, where an inner-layer treatment does not exist, improves the mean flow prediction in a channel. Furthermore, these FIML augmentations are mostly non-detrimental outside the training dataset. In addition to reporting these results, the paper offers physical explanations of the results. Last, we note that the conclusions drawn here are confined to the ML frameworks and the flows considered in this study. More detailed comparative studies and validation & verification studies are needed to account for developments in recent years.
AB - This work aims to incorporate basic calibrations of Reynolds-averaged Navier-Stokes (RANS) models as part of machine learning (ML) frameworks. The ML frameworks considered are tensor-basis neural network (TBNN), physics-informed machine learning (PIML), and field inversion & machine learning (FIML) in J. Fluid Mech., 2016, 807, 155-166, Phys. Rev. Fluids, 2017, 2(3), 034603 and J. Comp. Phys., 2016, 305, 758-774, and the baseline RANS models are the one-equation Spalart-Allmaras model, the two-equation k-ω model, and the seven-equation Reynolds stress transport models. ML frameworks are trained against plane channel flow and shear-layer flow data. We compare the ML frameworks and study whether the machine-learned augmentations are detrimental outside the training set. The findings are summarized as follows. The augmentations due to TBNN are detrimental. PIML leads to augmentations that are beneficial inside the training dataset but detrimental outside it. These results are not affected by the baseline RANS model. FIML’s augmentations to the two eddy viscosity models, where an inner-layer treatment already exists, are largely neutral. Its augmentation to the seven-equation model, where an inner-layer treatment does not exist, improves the mean flow prediction in a channel. Furthermore, these FIML augmentations are mostly non-detrimental outside the training dataset. In addition to reporting these results, the paper offers physical explanations of the results. Last, we note that the conclusions drawn here are confined to the ML frameworks and the flows considered in this study. More detailed comparative studies and validation & verification studies are needed to account for developments in recent years.
UR - http://www.scopus.com/inward/record.url?scp=85194151393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194151393&partnerID=8YFLogxK
U2 - 10.2514/6.2024-1574
DO - 10.2514/6.2024-1574
M3 - Conference contribution
AN - SCOPUS:85194151393
SN - 9781624107115
T3 - AIAA SciTech Forum and Exposition, 2024
BT - AIAA SciTech Forum and Exposition, 2024
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA SciTech Forum and Exposition, 2024
Y2 - 8 January 2024 through 12 January 2024
ER -