Incorporating compressional and shear wave types into fuzzy structure models for plates

Judith L. Rochat, Victor W. Sparrow

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Although realistic complex structures are usually difficult to model theoretically, fuzzy structure theory enables one to produce such a model without a detailed knowledge of the entire structure. Using the theory established by Pierce et al. [A. D. Pierce, V. W. Sparrow, and D. A. Russell, J. Vib. Acoust. (to be published), also ASME 93-WA/NCA- 17.] regarding fundamental structural-acoustic idealizations for structures with imprecisely known or fuzzy internals, the effects that fuzzy attachments have on different wave types in a primary (or master) structure are examined in this paper. In the theory by Pierce et al., the primary structure that undergoes vibrations is a thin plate mounted in an infinite baffle. On one side of the plate are fuzzy attachments, represented as an array of attached massspring- dashpot systems, which are excited by an incident plane pulse. This known theory explains the effects of these attachments on bending waves in the plate. In this paper, the theory is extended to isolated compressional and shear waves in a plate. While studying this new problem, it is discovered that coupling effects occur when the plate and attachment properties are not uniform in the direction perpendicular to the wave propagation. Hence, unlike the bending wave theory which models a finite thin plate with point attached oscillators, the new wave type theory uses a thin plate infinite in one direction with line attached oscillators also infinite in the same direction. For both the compressional and shear waves, it is found that the fuzzy attachments add an apparent frequency dependent mass and damping to the plate. These results are similar to those for the bending wave theory.

Original languageEnglish (US)
Title of host publication15th Biennial Conference on Mechanical Vibration and Noise - Acoustics, Vibrations, and Rotating Machines
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages247-252
Number of pages6
ISBN (Electronic)9780791897652
DOIs
StatePublished - 1995
EventASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium - Boston, United States
Duration: Sep 17 1995Sep 20 1995

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3B-1995

Conference

ConferenceASME 1995 Design Engineering Technical Conferences, DETC 1995, collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium
Country/TerritoryUnited States
CityBoston
Period9/17/959/20/95

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Incorporating compressional and shear wave types into fuzzy structure models for plates'. Together they form a unique fingerprint.

Cite this