Incorporation of Metal Phosphide Domains into Colloidal Hybrid Nanoparticles

Emil A. Hernández-Pagán, Robert W. Lord, Joseph M. Veglak, Raymond E. Schaak

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Colloidal hybrid nanoparticles have generated considerable attention in the inorganic nanomaterials community. The combination of different materials within a single nanoparticle can lead to synergistic properties that can enable new properties, new applications, and the discovery of new phenomena. As such, methodologies for the synthesis of hybrid nanoparticles that integrate metal-metal, metal chalcogenide, metal oxide, and oxide-chalcogenide domains have been extensively reported in the literature. However, colloidal hybrid nanoparticles containing metal phosphide domains are rare, despite being attractive systems for their potentially unique catalytic, photocatalytic, and optoelectronic properties. In this Forum Article, we report a study of the synthesis of colloidal hybrid nanoparticles that couple the metal phosphides Ni2P and CoxPy with Au, Ag, PbS, and CdS using heterogeneous seeded-growth reactions. We also investigate the transformation of Au-Ni heterodimers to Au-Ni2P, where phosphidation of preformed metal-metal hybrid nanoparticles offers an alternative route to metal phosphide systems. We also study sequential cation-exchange reactions to target specific metal phosphide hybrids, i.e., the transformation of Ni2P-PbS into Ni2P-Ag2S and then Ni2P-CdS. Throughout all of these pathways, the accompanying discussion emphasizes the synthetic rationale, as well as the challenges in synthesis and characterization that are unique to these systems. In particular, the observation of oxide shells that surround the phosphide domains has implications for the potential photocatalytic applications of these hybrid nanoparticles.

Original languageEnglish (US)
Pages (from-to)4278-4290
Number of pages13
JournalInorganic chemistry
Volume60
Issue number7
DOIs
StatePublished - Apr 5 2021

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Incorporation of Metal Phosphide Domains into Colloidal Hybrid Nanoparticles'. Together they form a unique fingerprint.

Cite this