Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes

Haoyu Sun, Yong Du, Rinki Kumar, Nicholas Buchkovich, Pingnian He

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Patients with diabetes infected with COVID-19 have greater mortality than those without comorbidities, but the underlying mechanisms remain unknown. This study aims to identify the mechanistic interactions between diabetes and severe COVID-19. Microparticles (MPs), the cell membrane-derived vesicles released on cell activation, are largely increased in patients with diabetes. To date, many mechanisms have been postulated for increased severity of COVID-19 in patients with underlying conditions, but the contributions of excessive MPs in patients with diabetes have been overlooked. This study characterizes plasma MPs from normal human subjects and patients with type 2 diabetes in terms of amount, cell origins, surface adhesive properties, ACE2 expression, spike protein binding capacity, and their roles in SARS-CoV-2 infection. Results showed that over 90% of plasma MPs express ACE2 that binds the spike protein of SARS-CoV-2. MPs in patients with diabetes increase 13-fold in quantity and 11-fold in adhesiveness when compared with normal subjects. Perfusion of human plasma with pseudo-typed SARS-CoV-2 virus or spike protein-bound MPs into human endothelial cell-formed microvessels-on-a chip demonstrated that MPs from patients with diabetes, not normal subjects, interact with endothelium and carry SARS-CoV-2 into cells through endocytosis, providing additional virus entry pathways and enhanced infection. Results also showed a large percentage of platelet-derived tissue factor-bearing MPs in diabetic plasma, which could contribute to thrombotic complications with SARS-CoV-2 infection. This study reveals a dual role of diabetic MPs in promoting SARS-CoV-2 entry and propagating vascular inflammation. These findings provide novel mechanistic insight into the high prevalence of COVID-19 in patients with diabetes and their propensity to develop severe vascular complications. NEW & NOTEWORTHY This study provides the first evidence that over 90% of human plasma microparticles express ACE2 that binds SARS-CoV-2 S protein with high affinity. Thus, the highly elevated adhesive circulating microparticles identified in patients with diabetes not only have greater SARS-CoV-2 binding capacity but also enable additional viral entry through virus-bound microparticle-endothelium interactions and enhanced infection. These findings reveal a novel mechanistic insight into the adverse outcomes of COVID-19 in patients with diabetes.

Original languageEnglish (US)
Pages (from-to)H1176-H1193
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number6
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)


Dive into the research topics of 'Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes'. Together they form a unique fingerprint.

Cite this