Increasing Extractable Work in Small Qubit Landscapes

Unnati Akhouri, Sarah Shandera, Gaukhar Yesmurzayeva

Research output: Contribution to journalArticlepeer-review

Abstract

An interesting class of physical systems, including those associated with life, demonstrates the ability to hold thermalization at bay and perpetuate states of high free-energy compared to a local environment. In this work we study quantum systems with no external sources or sinks for energy, heat, work, or entropy that allow for high free-energy subsystems to form and persist. We initialize systems of qubits in mixed, uncorrelated states and evolve them subject to a conservation law. We find that four qubits make up the minimal system for which these restricted dynamics and initial conditions allow an increase in extractable work for a subsystem. On landscapes of eight co-evolving qubits, interacting in randomly selected subsystems at each step, we demonstrate that restricted connectivity and an inhomogeneous distribution of initial temperatures both lead to landscapes with longer intervals of increasing extractable work for individual qubits. We demonstrate the role of correlations that develop on the landscape in enabling a positive change in extractable work.

Original languageEnglish (US)
Article number947
JournalEntropy
Volume25
Issue number6
DOIs
StatePublished - Jun 2023

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Mathematical Physics
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Increasing Extractable Work in Small Qubit Landscapes'. Together they form a unique fingerprint.

Cite this