TY - GEN
T1 - Increasing the responsiveness of recommended expert collaborators for online open projects
AU - Allaho, Mohammad Y.
AU - Lee, Wang Chien
N1 - Publisher Copyright:
Copyright 2014 ACM.
PY - 2014/11/3
Y1 - 2014/11/3
N2 - We consider the experts recommendation problem for open collaborative projects in large-scale Open Source Software (OSS) communities. In large-scale online community, recommending expert collaborators to a project coordinator or lead developer has two prominent challenges: (i) the "cold shoulder" problem, which is the lack of interest from the experts to collaborate and share their skills, and (ii) the "cold start" problem, which is an issue with community members who has scarce data history. In this paper, we consider the Degree of Knowledge (DoK) which imposes the knowledge of the skills factor, and the Social Relative Importance (SRI) which imposes the social distance factor to tackle the aforementioned challenges. We propose four DoK models and integrate them with three SRI methods under our proposed Expert Ranking (ER) framework to rank the candidate expert collaborators based on their likelihood of collaborating in response to a query formulated by the social network of a query initiator and certain required skills to a project/task. We evaluate our proposal using a dataset collected from Github.com, which is one of the most fast-growing, large-scale online OSS community. In addition, we test the models under different data scarcity levels. The experiment shows promising results of recommending expert collaborators who tend to make real collaborations to projects.
AB - We consider the experts recommendation problem for open collaborative projects in large-scale Open Source Software (OSS) communities. In large-scale online community, recommending expert collaborators to a project coordinator or lead developer has two prominent challenges: (i) the "cold shoulder" problem, which is the lack of interest from the experts to collaborate and share their skills, and (ii) the "cold start" problem, which is an issue with community members who has scarce data history. In this paper, we consider the Degree of Knowledge (DoK) which imposes the knowledge of the skills factor, and the Social Relative Importance (SRI) which imposes the social distance factor to tackle the aforementioned challenges. We propose four DoK models and integrate them with three SRI methods under our proposed Expert Ranking (ER) framework to rank the candidate expert collaborators based on their likelihood of collaborating in response to a query formulated by the social network of a query initiator and certain required skills to a project/task. We evaluate our proposal using a dataset collected from Github.com, which is one of the most fast-growing, large-scale online OSS community. In addition, we test the models under different data scarcity levels. The experiment shows promising results of recommending expert collaborators who tend to make real collaborations to projects.
UR - http://www.scopus.com/inward/record.url?scp=84937576788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937576788&partnerID=8YFLogxK
U2 - 10.1145/2661829.2662032
DO - 10.1145/2661829.2662032
M3 - Conference contribution
AN - SCOPUS:84937576788
T3 - CIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management
SP - 749
EP - 758
BT - CIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 23rd ACM International Conference on Information and Knowledge Management, CIKM 2014
Y2 - 3 November 2014 through 7 November 2014
ER -