Independent informative subgraph mining for graph information retrieval

Bingjun Sun, Prasenjit Mitra, C. Lee Giles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

In order to enable scalable querying of graph databases, intelligent selection of subgraphs to index is essential. An improved index can reduce response times for graph queries significantly. For a given subgraph query, graph candidates that may contain the subgraph are retrieved using the graph index and subgraph isomorphism tests are performed to prune out unsatisfied graphs. However, since the space of all possible subgraphs of the whole set of graphs is prohibitively large, feature selection is required to identify a good subset of subgraph features for indexing. Thus, one of the key issues is: given the set of all possible subgraphs of the graph set, which subset of features is the optimal such that the algorithm retrieves the smallest set of candidate graphs and reduces the number of subgraph isomorphism tests? We introduce a graph search method for subgraph queries based on subgraph frequencies. Then, we propose several novel feature selection criteria, Max-Precision, Max-Irredundant-Information, and Max-Information-Min-Redundancy, based on mutual information. Finally we show theoretically and empirically that our proposed methods retrieve a smaller candidate set than previous methods. For example, using the same number of features, our method improve the precision for the query candidate set by 4%-13% in comparison to previous methods. As a result the response time of subgraph queries also is improved correspondingly.

Original languageEnglish (US)
Title of host publicationACM 18th International Conference on Information and Knowledge Management, CIKM 2009
Pages563-572
Number of pages10
DOIs
StatePublished - 2009
EventACM 18th International Conference on Information and Knowledge Management, CIKM 2009 - Hong Kong, China
Duration: Nov 2 2009Nov 6 2009

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Other

OtherACM 18th International Conference on Information and Knowledge Management, CIKM 2009
Country/TerritoryChina
CityHong Kong
Period11/2/0911/6/09

All Science Journal Classification (ASJC) codes

  • General Business, Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'Independent informative subgraph mining for graph information retrieval'. Together they form a unique fingerprint.

Cite this