TY - JOUR
T1 - Independent Tuning of Electronic Properties and Induced Ferromagnetism in Topological Insulators with Heterostructure Approach
AU - Jiang, Zilong
AU - Chang, Cui Zu
AU - Tang, Chi
AU - Wei, Peng
AU - Moodera, Jagadeesh S.
AU - Shi, Jing
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/9/9
Y1 - 2015/9/9
N2 - The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (∼550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.
AB - The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (∼550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.
UR - http://www.scopus.com/inward/record.url?scp=84941071850&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84941071850&partnerID=8YFLogxK
U2 - 10.1021/acs.nanolett.5b01905
DO - 10.1021/acs.nanolett.5b01905
M3 - Article
AN - SCOPUS:84941071850
SN - 1530-6984
VL - 15
SP - 5835
EP - 5840
JO - Nano letters
JF - Nano letters
IS - 9
ER -