@inproceedings{51d6a2ae4268478393fd08f29005b5cf,
title = "Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - Rail-SAR",
abstract = "The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.",
author = "Getachew Kirose and Phelan, {Brian R.} and Sherbondy, {Kelly D.} and Ranney, {Kenneth I.} and Francois Koenig and Narayanan, {Ram M.}",
year = "2014",
doi = "10.1117/12.2051450",
language = "English (US)",
isbn = "9781628410143",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
booktitle = "Radar Sensor Technology XVIII",
address = "United States",
note = "Radar Sensor Technology XVIII ; Conference date: 05-05-2014 Through 07-05-2014",
}