TY - GEN
T1 - Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils
AU - Ibrahim, Ahmed
AU - Kiani, Mehdi
PY - 2016/10/13
Y1 - 2016/10/13
N2 - The operation frequency (f) has been a key parameter in optimizing wireless power transmission links for biomedical implants with millimeter (mm) dimensions. This paper studies the feasibility of using printed spiral coils (PSCs) for powering mm-sized implants with high power transmission efficiency (PTE) at different fps. Compared to wire-wound coils (WWCs), using a PSC in the implant side allows batch fabrication on rigid or flexible substrates, which can also be used as a platform for integrating implant components. For powering an implant with 1 mm diameter, located 10 mm inside the tissue, the geometries of transmitter (Tx) and receiver (Rx) PSCs were optimized at different fPs of 50 MHz, 200 MHz, and 500 MHz using a commercial field solver (HFSS). In simulations, PSC- and WWC-based links achieved maximum PTE of 0.13% and 3.3%, and delivered power of 65.7 μW and 720 μW under specific absorption rate (SAR) constraints at the optimal fp of 50 MHz and 100 MHz, respectively, suggesting that the performance of the PSC-based link is significantly inferior to that of the WWC-based link.
AB - The operation frequency (f) has been a key parameter in optimizing wireless power transmission links for biomedical implants with millimeter (mm) dimensions. This paper studies the feasibility of using printed spiral coils (PSCs) for powering mm-sized implants with high power transmission efficiency (PTE) at different fps. Compared to wire-wound coils (WWCs), using a PSC in the implant side allows batch fabrication on rigid or flexible substrates, which can also be used as a platform for integrating implant components. For powering an implant with 1 mm diameter, located 10 mm inside the tissue, the geometries of transmitter (Tx) and receiver (Rx) PSCs were optimized at different fPs of 50 MHz, 200 MHz, and 500 MHz using a commercial field solver (HFSS). In simulations, PSC- and WWC-based links achieved maximum PTE of 0.13% and 3.3%, and delivered power of 65.7 μW and 720 μW under specific absorption rate (SAR) constraints at the optimal fp of 50 MHz and 100 MHz, respectively, suggesting that the performance of the PSC-based link is significantly inferior to that of the WWC-based link.
UR - http://www.scopus.com/inward/record.url?scp=85009083938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009083938&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2016.7591801
DO - 10.1109/EMBC.2016.7591801
M3 - Conference contribution
C2 - 28269344
AN - SCOPUS:85009083938
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4800
EP - 4803
BT - 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Y2 - 16 August 2016 through 20 August 2016
ER -