Abstract
We study statistical inferences for a class of modulated stationary processes with time-dependent variances.Due to non-stationarity and the large number of unknown parameters, existing methods for stationary, or locally stationary, time series are not applicable. Based on a self-normalization technique, we address several inference problems, including a self-normalized central limit theorem, a self-normalized cumulative sum test for the change-point problem, a long-run variance estimation through blockwise self-normalization, and a self-normalization-based wild bootstrap. Monte Carlo simulation studies show that the proposed self-normalization-based methods outperform stationarity-based alternatives.We demonstrate the proposed methodology using two real data sets: annual mean precipitation rates in Seoul from 1771-2000, and quarterly U.S. Gross National Product growth rates from 1947-2002.
Original language | English (US) |
---|---|
Pages (from-to) | 205-227 |
Number of pages | 23 |
Journal | Bernoulli |
Volume | 19 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2013 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability