Inferring the gravitational wave memory for binary coalescence events

Neev Khera, Badri Krishnan, Abhay Ashtekar, Tommaso De Lorenzo

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Full, nonlinear general relativity predicts a memory effect for gravitational waves. For compact binary coalescence, the total gravitational memory serves as an inferred observable, conceptually on the same footing as the mass and the spin of the final black hole. Given candidate waveforms for any LIGO-Virgo event, then one can calculate the posterior probability distribution functions for the total gravitational memory and use them to compare and contrast the waveforms. In this paper, we present these posterior distributions for the binary black hole merger events reported in the first Gravitational Wave Transient Catalog, using the phenomenological and effective-one-body waveforms. On the whole, the two sets of posterior distributions agree with each other quite well though we find larger discrepancies for the =2, m=1 mode of the memory. This signals a possible source of systematic errors that was not captured by the posterior distributions of other inferred observables. Thus, the posterior distributions of various angular modes of total memory can serve as diagnostic tools to further improve the waveforms. Analyses such as this would be valuable especially for future events as the sensitivity of ground-based detectors improves, and for LISA which could measure the total gravitational memory directly.

Original languageEnglish (US)
Article number044012
JournalPhysical Review D
Issue number4
StatePublished - Feb 8 2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Inferring the gravitational wave memory for binary coalescence events'. Together they form a unique fingerprint.

Cite this