TY - GEN
T1 - Influence-aware truth discovery
AU - Zhang, Hengtong
AU - Li, Qi
AU - Ma, Fenglong
AU - Xiao, Houping
AU - Li, Yaliang
AU - Gao, Jing
AU - Su, Lu
N1 - Publisher Copyright:
© 2016 ACM.
PY - 2016/10/24
Y1 - 2016/10/24
N2 - In the age of big data, information for the same entity can be obtained from different sources, which is inevitably conflicting. Therefore, aggregation methods are needed to identify the trustworthy information from such conflicting data. Truth discovery, which improves the aggregation results by estimating source trustworthiness and discovering truths simultaneously, has become an emerging field. Most truth discovery methods assume that sources make their claims independently, which may not be true in practice. As a matter of fact, influences among sources are ubiquitous and the claims made by one source may be influenced by others. Although there is some work that considers source correlation, those methods are designed to handle categorical claims, which is not general enough to represent the complicated real world applications. To tackle these challenges in truth discovery, we propose an unsupervised probabilistic model named IATD. The model takes source correlations as prior for influence derivation. To model influences among sources, we introduce "claim trustworthiness", which fuses the trustworthiness of the source which provides the claim and the trustworthiness of its influencers. Besides, the proposed model can handle different data types using different distributions in the probabilistic model. Experiments on real-world datasets show that IATD model can improve the aggregation performance compared with the state-of-the-art truth discovery approaches. The properties of IATD model are further illustrated using simulated datasets.
AB - In the age of big data, information for the same entity can be obtained from different sources, which is inevitably conflicting. Therefore, aggregation methods are needed to identify the trustworthy information from such conflicting data. Truth discovery, which improves the aggregation results by estimating source trustworthiness and discovering truths simultaneously, has become an emerging field. Most truth discovery methods assume that sources make their claims independently, which may not be true in practice. As a matter of fact, influences among sources are ubiquitous and the claims made by one source may be influenced by others. Although there is some work that considers source correlation, those methods are designed to handle categorical claims, which is not general enough to represent the complicated real world applications. To tackle these challenges in truth discovery, we propose an unsupervised probabilistic model named IATD. The model takes source correlations as prior for influence derivation. To model influences among sources, we introduce "claim trustworthiness", which fuses the trustworthiness of the source which provides the claim and the trustworthiness of its influencers. Besides, the proposed model can handle different data types using different distributions in the probabilistic model. Experiments on real-world datasets show that IATD model can improve the aggregation performance compared with the state-of-the-art truth discovery approaches. The properties of IATD model are further illustrated using simulated datasets.
UR - http://www.scopus.com/inward/record.url?scp=84996602603&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84996602603&partnerID=8YFLogxK
U2 - 10.1145/2983323.2983785
DO - 10.1145/2983323.2983785
M3 - Conference contribution
AN - SCOPUS:84996602603
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 851
EP - 860
BT - CIKM 2016 - Proceedings of the 2016 ACM Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 25th ACM International Conference on Information and Knowledge Management, CIKM 2016
Y2 - 24 October 2016 through 28 October 2016
ER -