TY - JOUR
T1 - Influence of a great plains urban environment on a simulated supercell
AU - Reames, Larissa J.
AU - Stensrud, David J.
N1 - Publisher Copyright:
© 2018 American Meteorological Society.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - The effect of urban areas on weakly forced precipitation systems has been studied extensively. However, interactions between urban areas and strongly forced convection, such as supercells, remain relatively unexamined. The present study uses simulations of a supercell to quantify the impacts of a large plains urban area on the evolution and strength of a supercell. An initial ensemble of simulations (CTRLE) of a supercell over homogeneous land use is performed using the WRF-ARW Model. Additionally, 108 simulations are conducted in which the land-use pattern of Dallas-Ft. Worth, Texas, is placed inside the model domain, with the city center shifted to be in or near the path of the supercell. Simulations with urban areas are compared to CTRLE, with the aid of hierarchical clustering analysis to form statistically similar groups of simulations. Clustering analyses identify groups of ensemble members with closely located urban areas that have similar patterns of 0-1-km updraft helicity and near-surface minimum temperature and maximum wind speeds. Comparison of these groups of ensemble members to CTRLE suggests the urban area has a significant impact on storm characteristics, particularly on low-level rotation and mesocyclone track. Simulations where the storm passes to the north of or directly over the city center late in its life cycle deviate most significantly from CTRLE. In these members, low-and midlevel mesocyclone strength increases, and the mesocyclone tracks farther south when compared to CTRLE.
AB - The effect of urban areas on weakly forced precipitation systems has been studied extensively. However, interactions between urban areas and strongly forced convection, such as supercells, remain relatively unexamined. The present study uses simulations of a supercell to quantify the impacts of a large plains urban area on the evolution and strength of a supercell. An initial ensemble of simulations (CTRLE) of a supercell over homogeneous land use is performed using the WRF-ARW Model. Additionally, 108 simulations are conducted in which the land-use pattern of Dallas-Ft. Worth, Texas, is placed inside the model domain, with the city center shifted to be in or near the path of the supercell. Simulations with urban areas are compared to CTRLE, with the aid of hierarchical clustering analysis to form statistically similar groups of simulations. Clustering analyses identify groups of ensemble members with closely located urban areas that have similar patterns of 0-1-km updraft helicity and near-surface minimum temperature and maximum wind speeds. Comparison of these groups of ensemble members to CTRLE suggests the urban area has a significant impact on storm characteristics, particularly on low-level rotation and mesocyclone track. Simulations where the storm passes to the north of or directly over the city center late in its life cycle deviate most significantly from CTRLE. In these members, low-and midlevel mesocyclone strength increases, and the mesocyclone tracks farther south when compared to CTRLE.
UR - http://www.scopus.com/inward/record.url?scp=85047055716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047055716&partnerID=8YFLogxK
U2 - 10.1175/MWR-D-17-0284.1
DO - 10.1175/MWR-D-17-0284.1
M3 - Article
AN - SCOPUS:85047055716
SN - 0027-0644
VL - 146
SP - 1437
EP - 1462
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 5
ER -