Influence of exhaust gas recirculation on combustion instabilities in CH4 and H2/CH4 fuel mixtures

Don Ferguson, Joseph A. Ranalli, Peter Strakey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

This paper evaluates the impact of two strategies for reducing CO2 emissions on combustion instabilities in lean-premixed combustion. Exhaust gas recirculation can be utilized to increase the concentration of CO2 in the exhaust stream improving the efficiency in the post-combustion separation plant. This coupled with the use of coal derived syngas or hydrogen augmented natural gas can further decrease CO2 levels released into the environment. However, changes in fuel composition have been shown to alter the dynamic response in lean-premixed combustion systems. In this study, a fully premixed, swirl stabilized, atmospheric burner is operated on various blends of H2/CH4 fuels with N2 and CO2 dilution to simulate EGR. Acoustic pressure and velocity, and global heat release measurements were performed at fixed adiabatic flame temperatures to evaluate the impact of fuel composition and dilution on various mechanisms that drive the instabilities.

Original languageEnglish (US)
Title of host publicationASME Turbo Expo 2010
Subtitle of host publicationPower for Land, Sea, and Air, GT 2010
Pages1259-1267
Number of pages9
EditionPARTS A AND B
DOIs
StatePublished - 2010
EventASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010 - Glasgow, United Kingdom
Duration: Jun 14 2010Jun 18 2010

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume2

Other

OtherASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010
Country/TerritoryUnited Kingdom
CityGlasgow
Period6/14/106/18/10

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Influence of exhaust gas recirculation on combustion instabilities in CH4 and H2/CH4 fuel mixtures'. Together they form a unique fingerprint.

Cite this