Influence of Glutathione-S-Transferase A1*B Allele on the Metabolism of the Aromatase Inhibitor, Exemestane, in Human Liver Cytosols and in Patients Treated with Exemestane

Irina Teslenko, Julia Trudeau, Shaman Luo, Christy J.W. Watson, Gang Chen, Cristina I. Truica, Philip Lazarus

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Exemestane (EXE) is used to treat postmenopausal women diagnosed with estrogen receptor positive (ER+) breast cancer. A major mode of metabolism of EXE and its active metabolite, 17β-dihydroexemestane, is via glutathionylation by glutathione-S-transferase (GST) enzymes. The goal of the present study was to investigate the effects of genetic variation in EXE-metabolizing GST enzymes on overall EXE metabolism. Ex vivo assays examining human liver cytosols from 75 subjects revealed the GSTA1 *B*B genotype was associated with significant decreases in S-(androsta-1,4-diene-3,17-dion-6α-ylmethyl)-Lglutathione (P = 0.034) and S-(androsta-1,4-diene-17β-ol-3-on-6αylmethyl)-L-gutathione (P = 0.014) formation. In the plasma of 68 ER+ breast cancer patients treated with EXE, the GSTA1 *B*B genotype was associated with significant decreases in both EXE-cysteine (cys) (29%, P = 0.0056) and 17β-DHE-cys (34%, P = 0.032) as compared with patients with the GSTA1*A*A genotype, with significant decreases in EXE-cys (Ptrend = 0.0067) and 17β-DHE-cys (Ptrend = 0.028) observed in patients with increasing numbers of the GSTA1*B allele. A near-significant (Ptrend = 0.060) trend was also observed for urinary EXE-cys levels from the same patients. In contrast, plasma and urinary 17β-DHE-Gluc levels were significantly increased (36%, P = 0.00097 and 52%, P = 0.0089; respectively) in patients with the GSTA1 *B*B genotype. No significant correlations were observed between the GSTM1 null genotype and EXE metabolite levels. These data suggest that the GSTA1*B allele is associated with interindividual differences in EXE metabolism and may play a role in interindividual variability in overall response to EXE.

Original languageEnglish (US)
Pages (from-to)327-334
Number of pages8
JournalJournal of Pharmacology and Experimental Therapeutics
Volume382
Issue number3
DOIs
StatePublished - Sep 1 2022

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology

Fingerprint

Dive into the research topics of 'Influence of Glutathione-S-Transferase A1*B Allele on the Metabolism of the Aromatase Inhibitor, Exemestane, in Human Liver Cytosols and in Patients Treated with Exemestane'. Together they form a unique fingerprint.

Cite this