TY - JOUR
T1 - Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS)
AU - Liu, Juan
AU - Aruguete, Deborah Michiko
AU - Murayama, Mitsuhiro
AU - Hochella, Michael F.
PY - 2009/11/1
Y1 - 2009/11/1
N2 - Rarely observed nanoparticle dissolution rate data have been collected and explained for an environmentally and industrially relevant nanomaterial (PbS, the mineral galena) as a function of its particle size and aggregation state using high-resolution transmission electron microscopy (HRTEM) and solution analysis. Under identical anoxic acidic conditions (pH 3 HCl), it has been determined that the dissolution rate of PbS galena varies by at least 1 order of magnitude simply as a function of particle size, and also due to the aggregation state of the particles (dissolution rates measured are 4.4 x 10 -9 mol m-2 s-1 for dispersed 14 nm nanocrystals; 7.7 x 10-10 mol m-2 s-1 for dispersed 3.1 μm microcrystals; and 4.7 x 10-10 mol m-2 s-1 for aggregated 14 nm nanocrystals). The dissolution rate difference between galena microparticles and nanoparticles is due to differences in nanotopography and the crystallographic faces present. Aggregate vs. dispersed dissolution rates a rerelated to transport inhibition in the observed highly confined spaces between densely packed, aggregated nanocrystals, where self-diffusion coefficients of water and ions decrease dramatically. This study shows that factors at the nanometer scale significantly influence the release rate of aqueous, highly toxic and bioavailable Pb in natural or industrial environments during galena dissolution.
AB - Rarely observed nanoparticle dissolution rate data have been collected and explained for an environmentally and industrially relevant nanomaterial (PbS, the mineral galena) as a function of its particle size and aggregation state using high-resolution transmission electron microscopy (HRTEM) and solution analysis. Under identical anoxic acidic conditions (pH 3 HCl), it has been determined that the dissolution rate of PbS galena varies by at least 1 order of magnitude simply as a function of particle size, and also due to the aggregation state of the particles (dissolution rates measured are 4.4 x 10 -9 mol m-2 s-1 for dispersed 14 nm nanocrystals; 7.7 x 10-10 mol m-2 s-1 for dispersed 3.1 μm microcrystals; and 4.7 x 10-10 mol m-2 s-1 for aggregated 14 nm nanocrystals). The dissolution rate difference between galena microparticles and nanoparticles is due to differences in nanotopography and the crystallographic faces present. Aggregate vs. dispersed dissolution rates a rerelated to transport inhibition in the observed highly confined spaces between densely packed, aggregated nanocrystals, where self-diffusion coefficients of water and ions decrease dramatically. This study shows that factors at the nanometer scale significantly influence the release rate of aqueous, highly toxic and bioavailable Pb in natural or industrial environments during galena dissolution.
UR - http://www.scopus.com/inward/record.url?scp=70350771283&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350771283&partnerID=8YFLogxK
U2 - 10.1021/es902121r
DO - 10.1021/es902121r
M3 - Article
C2 - 19924941
AN - SCOPUS:70350771283
SN - 0013-936X
VL - 43
SP - 8178
EP - 8183
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 21
ER -