Influence of weakening minerals on ensemble strength and slip stability of faults

Chaoyi Wang, Derek Elsworth, Yi Fang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

We explore the impact of phyllosilicate (weak but velocity strengthening) in a majority tectosilicate (strong but velocity weakening) matrix on bulk shear strength and slip stability of faults. Numerical simple shear experiments using a distinct element model (DEM) are conducted on both uniform mixtures of quartz and talc analogs and on textured mixtures consisting of a talc layer embedded in a quartz matrix. The mechanical response of particles is represented by a linear elastic contact model with a slip-weakening constitutive relation representing the essence of rate-state friction. The weight percentage of the talc in the uniform mixtures and the relative thickness of the talc layer in the textured mixtures are varied to investigate the transitional behavior of shear strength and slip stability. Specifically, for uniform mixtures, ~50% reduction on bulk shear strength is observed with 25% talc present, and a dominant influence of talc occurs at 50%; for textured mixtures, a noticeable weakening effect is shown at a relative layer thickness of 1 particle, ~50% shear strength reduction is observed with 3-particles, and a dominant influence occurs at 5 particles. In terms of slip stability, a transition from velocity weakening to velocity strengthening is observed with 10% to 25% talc present in the uniform mixtures or with 3 particles to 5 particles in the textured mixtures. In addition, further analysis suggests that quartz has a high tendency toward dilation, potentially promoting permeability; while talc dilates with increased slip rate but compacts rapidly when slip rate is reduced, potentially destroying permeability. The simulation results match well with previous laboratory observations.

Original languageEnglish (US)
Pages (from-to)7090-7110
Number of pages21
JournalJournal of Geophysical Research: Solid Earth
Volume122
Issue number9
DOIs
StatePublished - Sep 2017

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Influence of weakening minerals on ensemble strength and slip stability of faults'. Together they form a unique fingerprint.

Cite this