InfoGCL: Information-Aware Graph Contrastive Learning

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, Xiang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

131 Scopus citations

Abstract

Various graph contrastive learning models have been proposed to improve the performance of learning tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, although all recent researches create two contrastive views, they differ greatly in view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph learning tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process and proposing an information-aware graph contrastive learning framework called InfoGCL. The key point of this framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. We empirically validate our theoretical analysis on both node and graph classification benchmark datasets, and demonstrate that our algorithm significantly outperforms the state-of-the-arts.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages30414-30425
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'InfoGCL: Information-Aware Graph Contrastive Learning'. Together they form a unique fingerprint.

Cite this