Information elasticity in ultra-wideband target detection amongst distributed clutter

Paul G. Singerman, Ram M. Narayanan, Muralidhar Rangaswamy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


Information elasticity is a new concept proposed by us to assess the role of information in making effective decisions in sensor processing. Information elasticity is defined as the ratio of the fractional increase in decision effectiveness to the fractional increase in information. One such application is the role of bandwidth when applied to target detection in ground clutter. Continuous, uniformly distributed, land clutter, such as snow, sand, or dirt, has a normalized radar cross section (NRCS) that increases with frequency in the microwave region of the electromagnetic (EM) spectrum. If a target's radar cross section (RCS) increases slower than the clutter that surrounds it as the signal bandwidth increases, this can limit the amount of useful fractional bandwidth that can be used for achieving high range resolution. Using equations for the RCS of a typical sphere target and the overall NRCS of land clutter, it is possible to determine the signal-to-clutter ratio (SCR) at differing fractional bandwidth percentages. If the size of the frequency bins measured is kept constant, a higher fractional bandwidth will have more frequency bins causing an increase in processing time and therefore a decrease in the elasticity. Several different target shapes and types of distributed clutter were simulated, and it is shown that there can be a decrease in elasticity when the fractional bandwidth exceeds a certain value. Furthermore, factoring in the sensor processing time shows that there exists a tipping point beyond which information overload occurs resulting in negative elasticity.

Original languageEnglish (US)
Title of host publicationRadar Sensor Technology XXII
EditorsArmin Doerry, Kenneth I. Ranney
ISBN (Electronic)9781510617773
StatePublished - 2018
EventRadar Sensor Technology XXII 2018 - Orlando, United States
Duration: Apr 16 2018Apr 18 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherRadar Sensor Technology XXII 2018
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Information elasticity in ultra-wideband target detection amongst distributed clutter'. Together they form a unique fingerprint.

Cite this