Information in Financial Contracts: Evidence from Securitization Agreements

Brent W. Ambrose, Yiqiang Han, Sanket Korgaonkar, Lily Shen

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce a novel application of machine learning to compare Pooling and Servicing Agreements (PSAs) that govern commercial mortgage-backed securities (CMBS). In contrast to the view that the PSA is largely boilerplate text, we document substantial variation across PSAs, both within- and across-underwriters and over time. A part of this variation is driven by differences in loan collateral across deals. Additionally, we find that differences in PSAs are correlated with ex-post loan and bond performance. Collectively, our analysis suggests the importance of examining the entire governing document, rather than specific components, when analyzing complex financial securities.

Original languageEnglish (US)
JournalJournal of Financial and Quantitative Analysis
DOIs
StateAccepted/In press - 2023

All Science Journal Classification (ASJC) codes

  • Accounting
  • Finance
  • Economics and Econometrics

Fingerprint

Dive into the research topics of 'Information in Financial Contracts: Evidence from Securitization Agreements'. Together they form a unique fingerprint.

Cite this