Infrared nano-imaging of Dirac magnetoexcitons in graphene

Michael Dapolito, Makoto Tsuneto, Wenjun Zheng, Lukas Wehmeier, Suheng Xu, Xinzhong Chen, Jiacheng Sun, Zengyi Du, Yinming Shao, Ran Jing, Shuai Zhang, Adrien Bercher, Yinan Dong, Dorri Halbertal, Vibhu Ravindran, Zijian Zhou, Mila Petrovic, Adrian Gozar, G. L. Carr, Qiang LiAlexey B. Kuzmenko, Michael M. Fogler, D. N. Basov, Xu Du, Mengkun Liu

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.

Original languageEnglish (US)
Pages (from-to)1409-1415
Number of pages7
JournalNature nanotechnology
Volume18
Issue number12
DOIs
StatePublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Infrared nano-imaging of Dirac magnetoexcitons in graphene'. Together they form a unique fingerprint.

Cite this