InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu, Yanchi Liu, Wei Cheng, Haifeng Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative InfuserKI framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that InfuserKI not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9% and 6%, respectively.

Original languageEnglish (US)
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages3675-3688
Number of pages14
ISBN (Electronic)9798891761681
DOIs
StatePublished - 2024
Event2024 Findings of the Association for Computational Linguistics, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Findings of the Association for Computational Linguistics, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration'. Together they form a unique fingerprint.

Cite this