TY - JOUR
T1 - Inhibition of tryptophan hydroxylase activity and decreased 5-HT1A receptor binding in a mouse model of Huntington's disease
AU - Yohrling IV, George J.
AU - Jiang, George C.T.
AU - DeJohn, Molly M.
AU - Robertson, Daniel J.
AU - Vrana, Kent E.
AU - Cha, Jang Ho J.
PY - 2002/9
Y1 - 2002/9
N2 - The pathogenic mechanisms of the mutant huntingtin protein that cause Huntington's disease (HD) are unknown. Previous studies have reported significant decreases in the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the brains of the R6/2 transgenic mouse model of HD. In an attempt to elucidate the cause of these neurochemical perturbations in HD, the protein levels and enzymatic activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, were determined. Enzyme activity was measured in brainstem homogenates from 4-, 8-, and 12-week-old R6/2 mice and compared with aged-matched wild-type control mice. We observed a 62% decrease in brainstem TPH activity (p = 0.009) in 4-week-old R6/2 mice, well before the onset of behavioral symptoms. In addition, significant decreases in TPH activity were also observed at 8 and 12 weeks of age (61%, p = 0.02 and 86%, p = 0.005, respectively). In the 12-week-old-mice, no change in immunoreactive TPH was observed. In vitro binding showed that TPH does not bind to exon 1 of huntingtin in a polyglutamine-dependent manner. Specifically, glutathione-S-transferase huntingtin exon 1 proteins with 20, 32 or 53 polyglutamines did not interact with radiolabeled tryptophan hydroxylase. Therefore, the inhibition of TPH activity does not appear to result from a direct huntingtin/TPH interaction. Receptor binding analyses for the 5-HT1A receptor in 12-week-old R6/2 mice revealed significant reductions in 8-OH-[3H]DPAT binding in several hippocampal and cortical regions. These results demonstrate that the serotonergic system in the R6/2 mice is severely disrupted in both presymptomatic and symptomatic mice. The presymptomatic inhibition of TPH activity in the R6/2 mice may help explain the functional consequences of HD and provide insights into new targets for pharmacotherapy.
AB - The pathogenic mechanisms of the mutant huntingtin protein that cause Huntington's disease (HD) are unknown. Previous studies have reported significant decreases in the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the brains of the R6/2 transgenic mouse model of HD. In an attempt to elucidate the cause of these neurochemical perturbations in HD, the protein levels and enzymatic activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, were determined. Enzyme activity was measured in brainstem homogenates from 4-, 8-, and 12-week-old R6/2 mice and compared with aged-matched wild-type control mice. We observed a 62% decrease in brainstem TPH activity (p = 0.009) in 4-week-old R6/2 mice, well before the onset of behavioral symptoms. In addition, significant decreases in TPH activity were also observed at 8 and 12 weeks of age (61%, p = 0.02 and 86%, p = 0.005, respectively). In the 12-week-old-mice, no change in immunoreactive TPH was observed. In vitro binding showed that TPH does not bind to exon 1 of huntingtin in a polyglutamine-dependent manner. Specifically, glutathione-S-transferase huntingtin exon 1 proteins with 20, 32 or 53 polyglutamines did not interact with radiolabeled tryptophan hydroxylase. Therefore, the inhibition of TPH activity does not appear to result from a direct huntingtin/TPH interaction. Receptor binding analyses for the 5-HT1A receptor in 12-week-old R6/2 mice revealed significant reductions in 8-OH-[3H]DPAT binding in several hippocampal and cortical regions. These results demonstrate that the serotonergic system in the R6/2 mice is severely disrupted in both presymptomatic and symptomatic mice. The presymptomatic inhibition of TPH activity in the R6/2 mice may help explain the functional consequences of HD and provide insights into new targets for pharmacotherapy.
UR - http://www.scopus.com/inward/record.url?scp=0036736196&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036736196&partnerID=8YFLogxK
U2 - 10.1046/j.1471-4159.2002.01084.x
DO - 10.1046/j.1471-4159.2002.01084.x
M3 - Article
C2 - 12354289
AN - SCOPUS:0036736196
SN - 0022-3042
VL - 82
SP - 1416
EP - 1423
JO - Journal of neurochemistry
JF - Journal of neurochemistry
IS - 6
ER -