TY - JOUR
T1 - Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2
AU - Chen, Xiang
AU - Shi, Chaowen
AU - Meng, Xiannan
AU - Zhang, Kaijia
AU - Li, Xiaoyao
AU - Wang, Cong
AU - Xiang, Zou
AU - Hu, Kebin
AU - Han, Xiaodong
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Pulmonary fibrosis is a progressive lung disorder of unknown etiology, which is characterized by alterations in alveolar epithelium function, fibroblast activation, and increased extracellular matrix deposition. Recent studies have demonstrated that PF is associated with uncontrolled production of cytokines after lung injury. In the present study, we found that transforming growth factor-β1 (TGF-β1) and fibroblast growth factor 2 (FGF-2) were both upregulated in bleomycin-induced fibrotic lung tissue and primary murine alveolar epithelial Type II (ATII) cells treated with bleomycin. Furthermore, we discovered that TGF-β1 could induce the differentiation of lung resident mesenchymal stem cells (LR-MSCs) into fibroblasts, which may play an essential role in PF. LR-MSCs incubated with FGF-2 showed modest alterations in the expression of α-SMA and Vimentin. Moreover, in our study, we found that Wnt/β-catenin signaling was activated both in vitro and in vivo as a result of bleomycin treatment. Interestingly, we also found that suppression of the Wnt/β-catenin signaling could significantly attenuate bleomycin-induced PF accompanied with decreased expression of TGF-β1 and FGF-2 in vitro and in vivo. These results support that controlling the aberrant expression of TGF-β1 and FGF-2 via inhibition of Wnt/β-catenin signaling could serve as a potential therapeutic strategy for PF.
AB - Pulmonary fibrosis is a progressive lung disorder of unknown etiology, which is characterized by alterations in alveolar epithelium function, fibroblast activation, and increased extracellular matrix deposition. Recent studies have demonstrated that PF is associated with uncontrolled production of cytokines after lung injury. In the present study, we found that transforming growth factor-β1 (TGF-β1) and fibroblast growth factor 2 (FGF-2) were both upregulated in bleomycin-induced fibrotic lung tissue and primary murine alveolar epithelial Type II (ATII) cells treated with bleomycin. Furthermore, we discovered that TGF-β1 could induce the differentiation of lung resident mesenchymal stem cells (LR-MSCs) into fibroblasts, which may play an essential role in PF. LR-MSCs incubated with FGF-2 showed modest alterations in the expression of α-SMA and Vimentin. Moreover, in our study, we found that Wnt/β-catenin signaling was activated both in vitro and in vivo as a result of bleomycin treatment. Interestingly, we also found that suppression of the Wnt/β-catenin signaling could significantly attenuate bleomycin-induced PF accompanied with decreased expression of TGF-β1 and FGF-2 in vitro and in vivo. These results support that controlling the aberrant expression of TGF-β1 and FGF-2 via inhibition of Wnt/β-catenin signaling could serve as a potential therapeutic strategy for PF.
UR - http://www.scopus.com/inward/record.url?scp=84975045635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84975045635&partnerID=8YFLogxK
U2 - 10.1016/j.yexmp.2016.04.003
DO - 10.1016/j.yexmp.2016.04.003
M3 - Article
C2 - 27112840
AN - SCOPUS:84975045635
SN - 0014-4800
VL - 101
SP - 22
EP - 30
JO - Experimental and Molecular Pathology
JF - Experimental and Molecular Pathology
IS - 1
ER -