TY - JOUR
T1 - Initial-state dependence of the quench dynamics in integrable quantum systems. II. Thermal states
AU - He, Kai
AU - Rigol, Marcos
PY - 2012/6/11
Y1 - 2012/6/11
N2 - We study properties of isolated integrable quantum systems after a sudden quench starting from thermal states. We show that, even if the system is initially in thermal equilibrium at finite temperature, the diagonal entropy after a quench remains a fraction of the entropy in the generalized ensembles introduced to describe integrable systems after relaxation. The latter is also, in general, different from the entropy in thermal equilibrium. Furthermore, we examine the difference in the distributions of conserved quantities in the thermal versus the generalized ensembles after a quench and show that they are also, in general, different from each other. This explains why these systems fail to thermalize. A finite-size scaling analysis is presented for each quantity, which allows us to make predictions for thermodynamically large lattice sizes.
AB - We study properties of isolated integrable quantum systems after a sudden quench starting from thermal states. We show that, even if the system is initially in thermal equilibrium at finite temperature, the diagonal entropy after a quench remains a fraction of the entropy in the generalized ensembles introduced to describe integrable systems after relaxation. The latter is also, in general, different from the entropy in thermal equilibrium. Furthermore, we examine the difference in the distributions of conserved quantities in the thermal versus the generalized ensembles after a quench and show that they are also, in general, different from each other. This explains why these systems fail to thermalize. A finite-size scaling analysis is presented for each quantity, which allows us to make predictions for thermodynamically large lattice sizes.
UR - http://www.scopus.com/inward/record.url?scp=84862160551&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862160551&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.85.063609
DO - 10.1103/PhysRevA.85.063609
M3 - Article
AN - SCOPUS:84862160551
SN - 1050-2947
VL - 85
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 6
M1 - 063609
ER -