Insertion of capsid proteins from nonenveloped viruses into the retroviral budding pathway

N. K. Krishna, J. W. Wills

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Retroviral Gag proteins direct the assembly and release of virus particles from the plasma membrane. The budding machinery consists of three small domains, the M (membrane-binding), I (interaction), and L (late or "pinching-off") domains. In addition, Gag proteins contain sequences that control particle size. For Rous sarcoma virus (RSV), the size determinant maps to the capsid (CA)-spacer peptide (SP) sequence, but it functions only when I domains are present to enable particles of normal density to be produced. Small deletions throughout the CA-SP sequence result in the release of particles that are very large and heterogeneous, even when I domains are present. In this report, we show that particles of relatively uniform size and normal density are released by budding when the size determinant and I domains in RSV Gag are replaced with capsid proteins from two unrelated, nonenveloped viruses: simian virus 40 and satellite tobacco mosaic virus. These results indicate that capsid proteins of nonenveloped viruses can interact among themselves within the context of Gag and be inserted into the retroviral budding pathway merely by attaching the M and L domains to their amino termini. Thus, the differences in the assembly pathways of enveloped and nonenveloped viruses may be far simpler than previously thought.

Original languageEnglish (US)
Pages (from-to)6527-6536
Number of pages10
JournalJournal of virology
Issue number14
StatePublished - 2001

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology


Dive into the research topics of 'Insertion of capsid proteins from nonenveloped viruses into the retroviral budding pathway'. Together they form a unique fingerprint.

Cite this