Insights into the metabolism, signaling, and physiological effects of 2’,3’-cyclic nucleotide monophosphates in bacteria

Nick J. Marotta, Emily E. Weinert

Research output: Contribution to journalReview articlepeer-review


2’,3’-cyclic nucleotide monophosphates (2’,3’-cNMPs) have been discovered within both prokaryotes and eukaryotes in the past decade and a half, raising questions about their conserved existence in cells. In plants and mammals, wounding has been found to cause increased levels of 2’,3’-cNMPs. Roles for 2’,3’-cNMPs in plant immunity suggest that their regulation may be valuable for both plant hosts and microbial pathogens. In support of this hypothesis, a plethora of microbial enzymes have been found with activities related to these molecules. Studies in bacteria suggest that 2’,3’-cNMPs are also produced in response to cellular stress and modulate expression of numerous genes. 2’,3’-cNMP levels affect bacterial phenotypes, including biofilm formation, motility, and growth. Within E. coli and Salmonella enterica, 2’,3’-cNMPs are produced by RNA degradation by RNase I, highlighting potential roles for Type 2 RNases producing 2’,3’-cNMPs in a range of organisms. Development of cellular tools to modulate 2’,3’-cNMP levels in bacteria has allowed for interrogation of the effects of 2’,3’-cNMP concentration on bacterial transcriptomes and physiology. Pull-downs of cellular 2’,3’-cNMP binding proteins have identified the ribosome and in vitro studies demonstrated that 2’,3’-cNMPs decrease translation, suggesting a direct mechanism for 2’,3-cNMP-dependent control of bacterial phenotypes. Future studies dissecting the cellular roles of 2’,3’-cNMPs will highlight novel signaling pathways within prokaryotes and which can potentially be engineered to control bacterial physiology.

Original languageEnglish (US)
Pages (from-to)118-131
Number of pages14
JournalCritical Reviews in Biochemistry and Molecular Biology
Issue number2-6
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology

Cite this