TY - JOUR
T1 - Insights on sources and formation mechanisms of liquid-bearing clouds over MOSAiC examined from a Lagrangian framework
AU - Silber, Israel
AU - Shupe, Matthew D.
N1 - Funding Information:
This research was supported by the U.S. Department of Energy Atmospheric System Research Program under grants DE-SC0021004 and DE-SC0021341.
Publisher Copyright:
© 2022 The Author(s).
PY - 2022/3/16
Y1 - 2022/3/16
N2 - Understanding Arctic stratiform liquid-bearing cloud life cycles and properly representing these life cycles in models is crucial for evaluations of cloud feedbacks as well as the faithfulness of climate projections for this rapidly warming region. Examination of cloud life cycles typically requires analyses of cloud evolution and origins on short time scales, on the order of hours to several days. Measurements from the recent Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provide a unique view of the current state of the central Arctic over an annual cycle. Here, we use the MOSAiC radiosonde measurements to detect liquid-bearing cloud layers over full atmospheric columns and to examine the cloud-generating air masses’ properties. We perform 5-day (120 h) back-trajectory calculations for every detected cloud and cluster them using a unique set of variables extracted from these trajectories informed by ERA5 reanalysis data. This clustering method enables us to separate between the air mass source regions such as ice-covered Arctic and midlatitude open water. We find that moisture intrusions into the central Arctic typically result in multilayer liquid-bearing cloud structures and that more than half of multilayer profiles include overlying liquid-bearing clouds originating in different types of air masses. Finally, we conclude that Arctic cloud formation via prolonged radiative cooling of elevated stable subsaturated air masses circulating over the Arctic can occur frequently (up to 20% of detected clouds in the sounding data set) and may lead to a significant impact of ensuing clouds on the surface energy budget, including net surface warming in some cases.
AB - Understanding Arctic stratiform liquid-bearing cloud life cycles and properly representing these life cycles in models is crucial for evaluations of cloud feedbacks as well as the faithfulness of climate projections for this rapidly warming region. Examination of cloud life cycles typically requires analyses of cloud evolution and origins on short time scales, on the order of hours to several days. Measurements from the recent Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provide a unique view of the current state of the central Arctic over an annual cycle. Here, we use the MOSAiC radiosonde measurements to detect liquid-bearing cloud layers over full atmospheric columns and to examine the cloud-generating air masses’ properties. We perform 5-day (120 h) back-trajectory calculations for every detected cloud and cluster them using a unique set of variables extracted from these trajectories informed by ERA5 reanalysis data. This clustering method enables us to separate between the air mass source regions such as ice-covered Arctic and midlatitude open water. We find that moisture intrusions into the central Arctic typically result in multilayer liquid-bearing cloud structures and that more than half of multilayer profiles include overlying liquid-bearing clouds originating in different types of air masses. Finally, we conclude that Arctic cloud formation via prolonged radiative cooling of elevated stable subsaturated air masses circulating over the Arctic can occur frequently (up to 20% of detected clouds in the sounding data set) and may lead to a significant impact of ensuing clouds on the surface energy budget, including net surface warming in some cases.
UR - http://www.scopus.com/inward/record.url?scp=85127024679&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127024679&partnerID=8YFLogxK
U2 - 10.1525/elementa.2021.000071
DO - 10.1525/elementa.2021.000071
M3 - Article
AN - SCOPUS:85127024679
SN - 2325-1026
VL - 10
JO - Elementa
JF - Elementa
IS - 1
ER -