@inproceedings{2f3a0b2fd992463fa7d6f1c92df667c5,
title = "Instantaneous stepped-frequency, non-linear radar part 2: Experimental confirmation",
abstract = "Last year, we presented the theory behind {"}instantaneous stepped-frequency, non-linear radar{"}. We demonstrated through simulation that certain devices (when interrogated by a multi-tone transmit signal) could be expected to produce a multi-tone output signal near harmonics of the transmitted tones. This hypothesized non-linear (multitone) response was then shown to be suitable for pulse compression via standard stepped-frequency processing techniques. At that time, however, we did not have measured data to support the theoretical and simulated results. We now present laboratory measurements confirming our initial hypotheses. We begin with a brief description of the experimental system, and then describe the data collection exercise. Finally, we present measured data demonstrating the accurate ranging of a non-linear target.",
author = "Kenneth Ranney and Gregory Mazzaro and Kyle Gallagher and Anthony Martone and Kelly Sherbondy and Ram Narayanan",
note = "Publisher Copyright: {\textcopyright} 2016 SPIE.; Radar Sensor Technology XX ; Conference date: 18-04-2016 Through 21-04-2016",
year = "2016",
doi = "10.1117/12.2228473",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Armin Doerry and Ranney, {Kenneth I.}",
booktitle = "Radar Sensor Technology XX",
address = "United States",
}