Abstract
Dynamic scanning and focusing of a laser beam using a robust integrated solid state platform is desirable for many space-based applications including free-space optical communications, target tracking, and optical data storage/processing. Electro-optic devices offer promise as an ideal platform for such applications. However, the relatively low focal powers and scan angles of existing electro-optic devices have limited their use in these areas. Recently, we have applied state of the art fabrication techniques and design optimization to achieve the first integrated lens and scanner device capable of collimating and focusing beams with input diameters of a few microns, then scanning the beam through a large angular range (nearly 20 degrees). The device, fabricated in a bulk LiTaO3 crystal, is ideal for coupling light into or out of channel waveguide or fiber optic systems. We will discuss the expected performance of the existing device in a radiation environment for space-based applications. In addition, we will discuss the expected performance of similarly optimized devices fabricated in other ferroelectric materials, radiation hardened and otherwise.
Original language | English (US) |
---|---|
Pages (from-to) | 133-137 |
Number of pages | 5 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 4134 |
Issue number | 1 |
DOIs | |
State | Published - Oct 26 2000 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering