TY - JOUR
T1 - Integrating additional factors into the TNM staging for cutaneous melanoma by machine learning
AU - Yang, Charles Q.
AU - Wang, Huan
AU - Liu, Zhenqiu
AU - Hueman, Matthew T.
AU - Bhaskaran, Aadya
AU - Henson, Donald E.
AU - Sheng, Li
AU - Chen, Dechang
N1 - Publisher Copyright:
© 2021 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2021/9
Y1 - 2021/9
N2 - Background Integrating additional factors into the TNM staging system is needed for more accurate risk classification and survival prediction for patients with cutaneous melanoma. In the present study, we introduce machine learning as a novel tool that incorporates additional prognostic factors to improve the current TNM staging system. Methods and findings Cancer-specific survival data for cutaneous melanoma with at least a 5 years follow-up were extracted from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute and split into the training set (40,781 cases) and validation set (5,390 cases). Five factors were studied: The primary tumor (T), regional lymph nodes (N), distant metastasis (M), age (A), and sex (S). The Ensemble Algorithm for Clustering Cancer Data (EACCD) was applied to the training set to generate prognostic groups. Utilizing only T, N, and M, a basic prognostic system was built where patients were stratified into 10 prognostic groups with well-separated survival curves, similar to 10 AJCC stages. These 10 groups had a significantly higher accuracy in survival prediction than 10 stages (C-index = 0.7682 vs 0.7643; increase in C-index = 0.0039, 95% CI = (0.0032, 0.0047); p-value = 7.2×10-23). Nevertheless, a positive association remained between the EACCD grouping and the AJCC staging (Spearman's rank correlation coefficient = 0.8316; p-value = 4.5×10-13). With additional information from A and S, a more advanced prognostic system was established using the training data that stratified patients into 10 groups and further improved the prediction accuracy (C-index = 0.7865 vs 0.7643; increase in C-index = 0.0222, 95% CI = (0.0191, 0.0254); p-value = 8.8×10-43). Both internal validation using the training set and temporal validation using the validation set showed good stratification and a high predictive accuracy of the prognostic systems. Conclusions The EACCD allows additional factors to be integrated into the TNM to create a prognostic system that improves patient stratification and survival prediction for cutaneous melanoma. This integration separates favorable from unfavorable clinical outcomes for patients and improves both cohort selection for clinical trials and treatment management.
AB - Background Integrating additional factors into the TNM staging system is needed for more accurate risk classification and survival prediction for patients with cutaneous melanoma. In the present study, we introduce machine learning as a novel tool that incorporates additional prognostic factors to improve the current TNM staging system. Methods and findings Cancer-specific survival data for cutaneous melanoma with at least a 5 years follow-up were extracted from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute and split into the training set (40,781 cases) and validation set (5,390 cases). Five factors were studied: The primary tumor (T), regional lymph nodes (N), distant metastasis (M), age (A), and sex (S). The Ensemble Algorithm for Clustering Cancer Data (EACCD) was applied to the training set to generate prognostic groups. Utilizing only T, N, and M, a basic prognostic system was built where patients were stratified into 10 prognostic groups with well-separated survival curves, similar to 10 AJCC stages. These 10 groups had a significantly higher accuracy in survival prediction than 10 stages (C-index = 0.7682 vs 0.7643; increase in C-index = 0.0039, 95% CI = (0.0032, 0.0047); p-value = 7.2×10-23). Nevertheless, a positive association remained between the EACCD grouping and the AJCC staging (Spearman's rank correlation coefficient = 0.8316; p-value = 4.5×10-13). With additional information from A and S, a more advanced prognostic system was established using the training data that stratified patients into 10 groups and further improved the prediction accuracy (C-index = 0.7865 vs 0.7643; increase in C-index = 0.0222, 95% CI = (0.0191, 0.0254); p-value = 8.8×10-43). Both internal validation using the training set and temporal validation using the validation set showed good stratification and a high predictive accuracy of the prognostic systems. Conclusions The EACCD allows additional factors to be integrated into the TNM to create a prognostic system that improves patient stratification and survival prediction for cutaneous melanoma. This integration separates favorable from unfavorable clinical outcomes for patients and improves both cohort selection for clinical trials and treatment management.
UR - http://www.scopus.com/inward/record.url?scp=85116073596&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116073596&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0257949
DO - 10.1371/journal.pone.0257949
M3 - Article
C2 - 34591891
AN - SCOPUS:85116073596
SN - 1932-6203
VL - 16
JO - PloS one
JF - PloS one
IS - 9 September
M1 - e0257949
ER -