TY - GEN
T1 - Intelligent portrait composition assistance
T2 - 1st International ACM Thematic Workshops, Thematic Workshops 2017
AU - Farhat, Farshid
AU - Kamani, Mohammad Mahdi
AU - Mishra, Sahil
AU - Wang, James Z.
N1 - Publisher Copyright:
© 2017 Association for Computing Machinery.
PY - 2017/10/23
Y1 - 2017/10/23
N2 - Retrieving photography ideas corresponding to a given location facilitates the usage of smart cameras, where there is a high interest among amateurs and enthusiasts to take astonishing photos at anytime and in any location. Existing research captures some aesthetic techniques and retrieves useful feedbacks based on one technique. However, they are restricted to a particular technique and the retrieved results have room to improve as they are confined to the quality of the query. There is a lack of a holistic framework to capture important aspects of a given scene and help a novice photographer by informative feedback to take a be.er shot in his/her photography adventure. This work proposes an intelligent framework of portrait composition using our deep-learned models and image retrieval methods. A highly-rated web-crawled portrait dataset is exploited for retrieval purposes. Our framework detects and extracts ingredients of a given scene representing as a correlated semantic model. It then matches extracted semantics with the dataset of aesthetically composed photos to investigate a ranked list of photography ideas, and gradually optimizes the human pose and other artistic aspects of the composed scene supposed to be captured. The conducted user study demonstrates that our approach is more helpful than other feedback retrieval systems.
AB - Retrieving photography ideas corresponding to a given location facilitates the usage of smart cameras, where there is a high interest among amateurs and enthusiasts to take astonishing photos at anytime and in any location. Existing research captures some aesthetic techniques and retrieves useful feedbacks based on one technique. However, they are restricted to a particular technique and the retrieved results have room to improve as they are confined to the quality of the query. There is a lack of a holistic framework to capture important aspects of a given scene and help a novice photographer by informative feedback to take a be.er shot in his/her photography adventure. This work proposes an intelligent framework of portrait composition using our deep-learned models and image retrieval methods. A highly-rated web-crawled portrait dataset is exploited for retrieval purposes. Our framework detects and extracts ingredients of a given scene representing as a correlated semantic model. It then matches extracted semantics with the dataset of aesthetically composed photos to investigate a ranked list of photography ideas, and gradually optimizes the human pose and other artistic aspects of the composed scene supposed to be captured. The conducted user study demonstrates that our approach is more helpful than other feedback retrieval systems.
UR - http://www.scopus.com/inward/record.url?scp=85034851160&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034851160&partnerID=8YFLogxK
U2 - 10.1145/3126686.3126710
DO - 10.1145/3126686.3126710
M3 - Conference contribution
AN - SCOPUS:85034851160
T3 - Thematic Workshops 2017 - Proceedings of the Thematic Workshops of ACM Multimedia 2017, co-located with MM 2017
SP - 17
EP - 25
BT - Thematic Workshops 2017 - Proceedings of the Thematic Workshops of ACM Multimedia 2017, co-located with MM 2017
PB - Association for Computing Machinery, Inc
Y2 - 23 October 2017 through 27 October 2017
ER -