IntelliLight: A reinforcement learning approach for intelligent traffic light control

Hua Wei, Huaxiu Yao, Guanjie Zheng, Zhenhui Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

460 Scopus citations

Abstract

The intelligent traffic light control is critical for an efficient transportation system. While existing traffic lights are mostly operated by hand-crafted rules, an intelligent traffic light control system should be dynamically adjusted to real-time traffic. There is an emerging trend of using deep reinforcement learning technique for traffic light control and recent studies have shown promising results. However, existing studies have not yet tested the methods on the real-world traffic data and they only focus on studying the rewards without interpreting the policies. In this paper, we propose a more effective deep reinforcement learning model for traffic light control. We test our method on a large-scale real traffic dataset obtained from surveillance cameras. We also show some interesting case studies of policies learned from the real data.

Original languageEnglish (US)
Title of host publicationKDD 2018 - Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages2496-2505
Number of pages10
ISBN (Print)9781450355520
DOIs
StatePublished - Jul 19 2018
Event24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018 - London, United Kingdom
Duration: Aug 19 2018Aug 23 2018

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Other

Other24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018
Country/TerritoryUnited Kingdom
CityLondon
Period8/19/188/23/18

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'IntelliLight: A reinforcement learning approach for intelligent traffic light control'. Together they form a unique fingerprint.

Cite this