Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence

Kevin Ferko, David Lachendro, Nick Chiappazzi, Amir H. Danesh-Yazdi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


While the vast majority of the literature in energy harvesting is dedicated to resonant harvesters, non-resonant harvesters, especially those that use turbulence-induced vibration to generate energy, have not been studied in as much detail. This is especially true for grid-generated turbulence. In this paper, the interaction of two side-by-side fluidic harvesters from a passive fractal grid-generated turbulent flow is considered. The fractal grid has been shown to significantly increase the turbulence generated in the flow which is the source of the vibration of the piezoelectric beams. In this experimental study, the influence of four parameters has been investigated: Beam lengths and configurations, mean flow velocity, distance from the grid and gap between the two beams. Experimental results show that the piezoelectric harvesters in fractal grid turbulence are capable of producing at least the same amount of power as those placed in passive rectangular grids with a larger pressure loss, allowing for a potentially significant increase in the efficiency of the energy conversion process, even though more experiments are required to study the behavior of the beams in homogeneous, fractal grid-generated turbulence.

Original languageEnglish (US)
Title of host publicationActive and Passive Smart Structures and Integrated Systems XII
EditorsJae-Hung Han, Alper Erturk
ISBN (Electronic)9781510616868
StatePublished - 2018
EventActive and Passive Smart Structures and Integrated Systems XII 2018 - Denver, United States
Duration: Mar 5 2018Mar 8 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherActive and Passive Smart Structures and Integrated Systems XII 2018
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence'. Together they form a unique fingerprint.

Cite this