Abstract
Background: Endobronchial path selection is important for the bronchoscopic diagnosis of focal lung lesions. Path selection typically involves mentally reconstructing a three-dimensional path by interpreting a stack of two-dimensional (2D) axial plane CT scan sections. The hypotheses of our study about path selection were as follows: (1) bronchoscopists are inaccurate and overly confident when making endobronchial path selections based on 2D CT scan analysis; and (2) path selection accuracy and confidence improve and become better aligned when bronchoscopists employ path-planning methods based on virtual bronchoscopy (VB). Methods: Studies of endobronchial path selection comparing three path-planning methods (ie, the standard 2D CT scan analysis and two new VB-based techniques) were performed. The task was to navigate to discrete lesions located between the third-order and fifth-order bronchi of the right upper and middle lobes. Outcome measures were the cumulative accuracy of making four sequential path selection decisions and self-reported confidence (1, least confident; 5, most confident). Both experienced and inexperienced bronchoscopists participated in the studies. Results: In the first study involving a static paper-based tool, the mean (± SD) cumulative accuracy was 14 ± 3% using 2D CT scan analysis (confidence, 3.4 ± 1.3) and 49 ± 15% using a VB-based technique (confidence, 4.2 ± 1.1; p = 0.0001 across all comparisons). For a second study using an interactive computer-based tool, the mean accuracy was 40 ± 28% using 2D CT scan analysis (confidence, 3.0 ± 0.3) and 96 ± 3% using a dynamic VB-based technique (confidence, 4.6 ± 0.2). Regardless of the experience level of the bronchoscopist, use of the standard 2D CT scan analysis resulted in poor path selection accuracy and misaligned confidence. Use of the VB-based techniques resulted in considerably higher accuracy and better aligned decision confidence. Conclusions: Endobronchial path selection is a source of error in the bronchoscopy workflow. The use of VB-based path-planning techniques significantly improves path selection accuracy over use of the standard 2D CT scan section analysis in this simulation format.
Original language | English (US) |
---|---|
Pages (from-to) | 897-905 |
Number of pages | 9 |
Journal | CHEST |
Volume | 133 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2008 |
All Science Journal Classification (ASJC) codes
- Pulmonary and Respiratory Medicine
- Critical Care and Intensive Care Medicine
- Cardiology and Cardiovascular Medicine