TY - GEN
T1 - Interfacial blister evolution of coated surfaces under severe thermal and pressure transients
AU - Harris, J. T.
AU - Segall, A. E.
AU - Robinson, D.
AU - Carter, R.
PY - 2013/12/1
Y1 - 2013/12/1
N2 - The effects of severe thermal- and pressure-transients on coated substrates with indentation-induced, blister defects were analyzed using experimental and finite-element methods. An explicit FEA approach was first used to assess the transient thermal- and stress-states and the propensity for fracture related damage and evolution, under uniform convection and pressure transients across the surface; cohesive zone properties were evaluated in a previous study before being applied in an implicit indentation simulation. The indentation simulation results then served as the initial conditions for explicit modeling of interfacial flaw evolution due to thermal and pressure transients. Various conditions were analyzed including thermal and gun tube boundary conditions, and the effects of coating thermal capacitance. Given the need for robust coatings, the experimental and modeling procedures explored by this study will have important ramifications for coated tube design.
AB - The effects of severe thermal- and pressure-transients on coated substrates with indentation-induced, blister defects were analyzed using experimental and finite-element methods. An explicit FEA approach was first used to assess the transient thermal- and stress-states and the propensity for fracture related damage and evolution, under uniform convection and pressure transients across the surface; cohesive zone properties were evaluated in a previous study before being applied in an implicit indentation simulation. The indentation simulation results then served as the initial conditions for explicit modeling of interfacial flaw evolution due to thermal and pressure transients. Various conditions were analyzed including thermal and gun tube boundary conditions, and the effects of coating thermal capacitance. Given the need for robust coatings, the experimental and modeling procedures explored by this study will have important ramifications for coated tube design.
UR - http://www.scopus.com/inward/record.url?scp=84894677523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84894677523&partnerID=8YFLogxK
U2 - 10.1115/PVP2013-97596
DO - 10.1115/PVP2013-97596
M3 - Conference contribution
AN - SCOPUS:84894677523
SN - 9780791855676
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - ASME 2013 Pressure Vessels and Piping Conference, PVP 2013
T2 - ASME 2013 Pressure Vessels and Piping Conference, PVP 2013
Y2 - 14 July 2013 through 18 July 2013
ER -