Interfacial origin of dielectric constant enhancement in high-temperature polymer dilute nanocomposites

Xin Chen, Hancheng Qin, Yang Liu, Yen Ting Lin, Bing Zhang, Wenchang Lu, Seong H. Kim, J. Bernholc, Qing Wang, Q. M. Zhang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


The origin of dielectric constant enhancement in high-temperature (high glass transition temperature Tg) polymer dilute nanocomposites is investigated via Infrared (IR) Spectroscopy applied through Atomic Force Microscope (AFM) and density functional theory (DFT) calculations. The dielectric constant can be greatly enhanced by trace nanofiller loadings (<0.5 vol. %) in a broad class of high-temperature polymers without affecting or even with a positive influence on breakdown strength and dielectric loss. This avenue provides attractive polymer systems for high-performance polymer-based capacitive energy storage in a wide temperature range. In the dilute nanocomposites, the interface regions between the polymers and trace nanofillers are the key to the observed dielectric constant enhancement. This Letter employs AFM-IR to study chain packing in the interface regions of polyetherimide (PEI) dilute nanocomposites. The experimental results and DFT calculations indicate that flexible linkages, i.e., ether groups in PEI, play a crucial role in inducing heterogeneous morphologies in the interface regions. These results are confirmed by studies of PI(PDMA/ODA) and other dilute polymer nanocomposites in the literature as well as by lack of dielectric constant enhancement in PI(Matrimid® 5218) that does not contain flexible linkages.

Original languageEnglish (US)
Article number212901
JournalApplied Physics Letters
Issue number21
StatePublished - May 22 2023

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Cite this