TY - JOUR
T1 - Interleaved ultrawideband antenna arrays based on optimized polyfractal tree structures
AU - Petko, Joshua S.
AU - Werner, Douglas H.
PY - 2009
Y1 - 2009
N2 - There is considerable interest in interleaving multiple phased array antennas into a single common aperture system. Current phased array antenna technology is limited to narrowband operation, leading to the appearance of grating lobes and strong mutual coupling effects when they are incorporated into the design of a common aperture system. To overcome this obstacle, a new class of arrays, called polyfractal arrays, has been introduced that possess natural wideband properties well suited for large-scale genetic algorithm optimizations. These arrays also possess recursive beamforming properties and an autopolyploidy-based chromosome expansion that can dramatically accelerate the convergence of a genetic algorithm. In addition, a robust Pareto optimization can be applied to reduce the peak sidelobe levels at several frequencies throughout the intended operating band, leading to ultrawideband antenna array designs. Because of their lack of grating lobes, these polyfractal arrays are ideal building blocks for interleaved antenna array systems. This paper develops these concepts, first creating ultrawideband array designs based on polyfractal geometries and then interleaving these designs into a common aperture system. Several examples of interleaved systems are discussed, with one two-array system possessing a peak sidelobe level of nearly -18 dB with no grating lobes over a 20:1 bandwidth with either of the component array mainbeams steered independently up to 60° from broadside.
AB - There is considerable interest in interleaving multiple phased array antennas into a single common aperture system. Current phased array antenna technology is limited to narrowband operation, leading to the appearance of grating lobes and strong mutual coupling effects when they are incorporated into the design of a common aperture system. To overcome this obstacle, a new class of arrays, called polyfractal arrays, has been introduced that possess natural wideband properties well suited for large-scale genetic algorithm optimizations. These arrays also possess recursive beamforming properties and an autopolyploidy-based chromosome expansion that can dramatically accelerate the convergence of a genetic algorithm. In addition, a robust Pareto optimization can be applied to reduce the peak sidelobe levels at several frequencies throughout the intended operating band, leading to ultrawideband antenna array designs. Because of their lack of grating lobes, these polyfractal arrays are ideal building blocks for interleaved antenna array systems. This paper develops these concepts, first creating ultrawideband array designs based on polyfractal geometries and then interleaving these designs into a common aperture system. Several examples of interleaved systems are discussed, with one two-array system possessing a peak sidelobe level of nearly -18 dB with no grating lobes over a 20:1 bandwidth with either of the component array mainbeams steered independently up to 60° from broadside.
UR - http://www.scopus.com/inward/record.url?scp=70349239022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349239022&partnerID=8YFLogxK
U2 - 10.1109/TAP.2009.2027148
DO - 10.1109/TAP.2009.2027148
M3 - Article
AN - SCOPUS:70349239022
SN - 0018-926X
VL - 57
SP - 2622
EP - 2632
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 9
ER -