TY - JOUR
T1 - Intermittent hypoxia activates peptidylglycine α-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing
AU - Sharma, Suresh D.
AU - Raghuraman, Gayatri
AU - Lee, Myeong Seon
AU - Prabhakar, Nanduri R.
AU - Kumar, Ganesh K.
PY - 2009/1
Y1 - 2009/1
N2 - Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O 2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and pepti-dyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O 2 for 15 s followed by 21% O 2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-ami-dated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V max but has no effect on K m. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.
AB - Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O 2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and pepti-dyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O 2 for 15 s followed by 21% O 2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-ami-dated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V max but has no effect on K m. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.
UR - http://www.scopus.com/inward/record.url?scp=58649093541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58649093541&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.90702.2008
DO - 10.1152/japplphysiol.90702.2008
M3 - Article
C2 - 18818385
AN - SCOPUS:58649093541
SN - 8750-7587
VL - 106
SP - 12
EP - 19
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 1
ER -