Interpretable machine learning for analysing heterogeneous drivers of geographic events in space-time

Arif Masrur, Manzhu Yu, Prasenjit Mitra, Donna Peuquet, Alan Taylor

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Machine learning (ML) interpretability has become increasingly crucial for identifying accurate and relevant structural relationships between spatial events and factors that explain them. Methodologically aspatial ML algorithms with an apparent high predictive power ignore non-stationary domain relationships in spatio-temporal data (e.g. dependence, heterogeneity), leading to incorrect interpretations and poor management decisions. This study addresses this critical methodological issue of ‘interpretability’ in ML-based modeling of structural relationships using the example of heterogeneous drivers of wildfires across the United States. Specifically, we present and evaluate a spatio-temporally interpretable random forest (iST-RF) that uses spatio-temporal sampling-based training and weighted prediction. Although the ultimate scientific objective is to derive interpretation in space-time, experiments show that iST-RF can improve predictive accuracy (76%) compared to the aspatial RF approach (70%) while enhancing interpretations of the trained model’s spatio-temporal relevance for its ensemble prediction. This novel approach can help balance prediction and interpretation with fidelity in a spatial data science life cycle. However, challenges exist for predictive modeling when the dataset is very small because in such cases locally optimized sub-model’s prediction performance can be suboptimal. With that caveat, our proposed approach is an ideal choice for identifying drivers of spatio-temporal events at country- or regional-scale studies.

Original languageEnglish (US)
Pages (from-to)692-719
Number of pages28
JournalInternational Journal of Geographical Information Science
Issue number4
StatePublished - 2022

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Geography, Planning and Development
  • Library and Information Sciences


Dive into the research topics of 'Interpretable machine learning for analysing heterogeneous drivers of geographic events in space-time'. Together they form a unique fingerprint.

Cite this