Interpretable Prediction Rules for Congestion Risk in Intensive Care Units

Fernanda Bravo, Cynthia Rudin, Yaron Shaposhnik, Yuting Yuan

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We study the problem of predicting congestion risk in intensive care units (ICUs). Congestion is associated with poor service experience, high costs, and poor health outcomes. By predicting future congestion, decision makers can initiate preventive measures, such as rescheduling activities or increasing short-term capacity, to mitigate the effects of congestion. To this end, we consider well-established queueing models of ICUs and define “high-risk states” as system states that are likely to lead to congestion in the near future. We strive to formulate rules for determining whether a given system state is high risk. We design the rules to be interpretable (informally, easy to understand) for their practical appeal to stakeholders. We show that for simple Markovian queueing systems, such as the M=M=∞ queue with multiple patient classes, our rules take the form of linear and quadratic functions on the state space. For more general queueing systems, we employ methods from queueing theory, simulation, and machine learning (ML) to devise interpretable prediction rules, and we demonstrate their effectiveness through an extensive computational study, which includes a large-scale ICU model validated using data. Our study shows that congestion risk can be effectively and transparently predicted using linear ML models and interpretable features engineered from the queueing model representation of the system.

Original languageEnglish (US)
Pages (from-to)111-130
Number of pages20
JournalStochastic Systems
Volume14
Issue number2
DOIs
StatePublished - Jun 2024

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modeling and Simulation
  • Statistics, Probability and Uncertainty
  • Management Science and Operations Research

Fingerprint

Dive into the research topics of 'Interpretable Prediction Rules for Congestion Risk in Intensive Care Units'. Together they form a unique fingerprint.

Cite this